

LU0980C160

Pump Laser Chip

Up to 160mW operation power

Features:

- · Wavelength 976-984nm
- High kink-free power
- · Proven reliability for high power operation
- · Suited for cooled operation
- Compliant with Telcordia GR-468-CORE

Description / Applications:

The Lumics LU0980C160 laser chip contains an optimized GaAs/AlGaAs/InGaAs quantum well high power laser. It has been specifically designed for applications in low noise high power Erbium Doped Fiber Amplifiers (EDFA). The extremely stringent reliability requirements are achieved through our patent pending innovative technology. This includes careful design, exactly defined manufacturing and extensive testing. The qualification contains a set of optoelectronic, thermal and mechanical tests. Each laser chip is individually serialized for traceability and is shipped with a specified set of test data.

Characteristics:

Parameter	Conditions	Symbol	Min	Тур	Мах	Unit
Kink-free (1) Facet Power		P _k			230	mW
Operating Power (2)	spec.	P _{op}	120	160		mW
Operating Forward Current		I _{op}		230	260	mA
Threshold Current		l _{th}		64	70	mA
Characteristic Temp.		T ₀	110	130		K
Forward Voltage	at I _{op} , T _{op}	V _{op}		1.55	1.6	V
Slope Efficiency	at I _{op} , T _{op}	η _{diff}	0.88	0.93		W/A
Peak Wavelength	at I _{op} , T _{op}	λ_{peak}	976	980	984	nm
Spectral Width (3)	at I _{op} , T _{op}	λ_{rms}		1.5	2	nm
Lateral Farfield	at I _{op} , T _{op}	ΔΘII	5	6	8	deg
Vertical Farfield	at I _{op} , T _{op}	ΔΘl	22	23	25	deg
AR Reflectivity		r _f		1		%
HR Reflectivity		r _r		95		%

(1) Kink-free is defined as IdL/dI - dL/dI > I < 0.2, where dL/dI is the average slope efficiency below kink

(2) Operating current (power) is the maximum current (power) where the slope efficiency does not decrease by more than 20% from average between 1.8x - 3.0x threshold to 120% of the maximum rated output power.

(3) λ rms is defined as 95% power is in the central peak defined as ± rms

Absolute Maximum Ratings:

Parameter	Symbol	Min	Max	Unit
Forward Current	I _{F,max}		350	mA
Reverse Voltage	$V_{R,max}$		0.3	V
Storage Temp.	T _{max}	-40	85	°C
Processing Temp. (max. 10 sec.)	T _{C,max}		345	°C

Drawing of Laser Chip (dimensions in μ m):

Customized versions with other operation power levels and different wavelengths are available on request.

For further information and ordering details please contact:

ADVANCED PHOTONICS INTERNATIONAL, INC. 54 PLYMOUTH ROAD WHITE PLAINS, NY Tel: 914 347-7732 Fax: 914 347-2788 Email: info@advancedphotonicsintl.com WEBSITE: www.advancedphotonicsintl.com